Gestion du temps DS1302

Nous avons choisi le module DS1302 qzcttx1369980936277

VCC1 = + pile (3,2v)

VCC2 = +5v Arduino

GND = Masse Arduino et Masse Pile

Les broches RST ; I/O et CLCK doivent être raccordées directement à trois broches « DIGITAL » de la carte Arduino.

IMGP2064 IMGP2065

teste2

Pour utilisation avec Librairie : https://github.com/msparks/arduino-ds1302

Le DS1302 utilise une interface propriétaire sur 3 fils, le code suivant (provenant d’Arduino PlayGround) permet de régler l’heure (cf. ligne #define SET_DATE_TIME_JUST_ONCE) et de l’afficher :

 // Version 2-1 : only for DS1 302 Clock Module  
 //   Littke adpted from arduino.cc user "Krodal"  
 // Set your own pins with these defines !  
 #define DS1302_SCLK_PIN  8  // Arduino pin for the Serial Clock  
 #define DS1302_IO_PIN   9  // Arduino pin for the Data I/O  
 #define DS1302_CE_PIN  10  // Arduino pin for the Chip RST  
 // Macros to convert the bcd values of the registers to normal  
 // integer variables.  
 // The code uses seperate variables for the high byte and the low byte  
 // of the bcd, so these macros handle both bytes seperately.  
 #define bcd2bin(h,l)  (((h)*10) + (l))  
 #define bin2bcd_h(x)  ((x)/10)  
 #define bin2bcd_l(x)  ((x)%10)  
 // Register names.  
 // Since the highest bit is always '1',   
 // the registers start at 0x80  
 // If the register is read, the lowest bit should be '1'.  
 #define DS1302_SECONDS      0x80  
 #define DS1302_MINUTES      0x82  
 #define DS1302_HOURS       0x84  
 #define DS1302_DATE       0x86  
 #define DS1302_MONTH       0x88  
 #define DS1302_DAY        0x8A  
 #define DS1302_YEAR       0x8C  
 #define DS1302_ENABLE      0x8E  
 #define DS1302_TRICKLE      0x90  
 #define DS1302_CLOCK_BURST    0xBE  
 #define DS1302_CLOCK_BURST_WRITE 0xBE  
 #define DS1302_CLOCK_BURST_READ 0xBF  
 #define DS1302_RAMSTART     0xC0  
 #define DS1302_RAMEND      0xFC  
 #define DS1302_RAM_BURST     0xFE  
 #define DS1302_RAM_BURST_WRITE  0xFE  
 #define DS1302_RAM_BURST_READ  0xFF  
 // Defines for the bits, to be able to change   
 // between bit number and binary definition.  
 // By using the bit number, using the DS1302   
 // is like programming an AVR microcontroller.  
 // But instead of using "(1<<X)", or "_BV(X)",   
 // the Arduino "bit(X)" is used.  
 #define DS1302_D0 0  
 #define DS1302_D1 1  
 #define DS1302_D2 2  
 #define DS1302_D3 3  
 #define DS1302_D4 4  
 #define DS1302_D5 5  
 #define DS1302_D6 6  
 #define DS1302_D7 7  
 // Bit for reading (bit in address)  
 #define DS1302_READBIT DS1302_D0 // READBIT=1: read instruction  
 // Bit for clock (0) or ram (1) area,   
 // called R/C-bit (bit in address)  
 #define DS1302_RC DS1302_D6  
 // Seconds Register  
 #define DS1302_CH DS1302_D7  // 1 = Clock Halt, 0 = start  
 // Hour Register  
 #define DS1302_AM_PM DS1302_D5 // 0 = AM, 1 = PM  
 #define DS1302_12_24 DS1302 D7 // 0 = 24 hour, 1 = 12 hour  
 // Enable Register  
 #define DS1302_WP DS1302_D7  // 1 = Write Protect, 0 = enabled  
 // Trickle Register  
 #define DS1302_ROUT0 DS1302_D0  
 #define DS1302_ROUT1 DS1302_D1  
 #define DS1302_DS0  DS1302_D2  
 #define DS1302_DS1  DS1302_D2  
 #define DS1302_TCS0 DS1302_D4  
 #define DS1302_TCS1 DS1302_D5  
 #define DS1302_TCS2 DS1302_D6  
 #define DS1302_TCS3 DS1302_D7  
 // Structure for the first 8 registers.  
 // These 8 bytes can be read at once with   
 // the 'clock burst' command.  
 // Note that this structure contains an anonymous union.  
 // It might cause a problem on other compilers.  
 typedef struct ds1302_struct  
 {  
  uint8_t Seconds:4;   // low decimal digit 0-9  
  uint8_t Seconds10:3;  // high decimal digit 0-5  
  uint8_t CH:1;      // CH = Clock Halt  
  uint8_t Minutes:4;  
  uint8_t Minutes10:3;  
  uint8_t reserved1:1;  
  union  
  {  
   struct  
   {  
    uint8_t Hour:4;  
    uint8_t Hour10:2;  
    uint8_t reserved2:1;  
    uint8_t hour_12_24:1; // 0 for 24 hour format  
   } h24;  
   struct  
   {  
    uint8_t Hour:4;  
    uint8_t Hour10:1;  
    uint8_t AM_PM:1;   // 0 for AM, 1 for PM  
    uint8_t reserved2:1;  
    uint8_t hour_12_24:1; // 1 for 12 hour format  
   } h12;  
  };  
  uint8_t Date:4;      // Day of month, 1 = first day  
  uint8_t Date10:2;  
  uint8_t reserved3:2;  
  uint8_t Month:4;     // Month, 1 = January  
  uint8_t Month10:1;  
  uint8_t reserved4:3;  
  uint8_t Day:3;      // Day of week, 1 = first day (any day)  
  uint8_t reserved5:5;  
  uint8_t Year:4;      // Year, 0 = year 2000  
  uint8_t Year10:4;  
  uint8_t reserved6:7;  
  uint8_t WP:1;       // WP = Write Protect  
 };  
 void setup()  
 {     
  ds1302_struct rtc;  
  Serial.begin(9600);  
  Serial.println(F("DS1302 Real Time Clock"));  
  Serial.println(F("Version 2-1, November 2013"));  
  // Start by clearing the Write Protect bit  
  // Otherwise the clock data cannot be written  
  // The whole register is written,   
  // but the WP-bit is the only bit in that register.  
  DS1302_write (DS1302_ENABLE, 0);  
  // Disable Trickle Charger.  
  DS1302_write (DS1302_TRICKLE, 0x00);  
 // Comment or UnComment the the next define,   
 // after the right date and time are set.  
 //#define SET_DATE_TIME_JUST_ONCE  
 #ifdef SET_DATE_TIME_JUST_ONCE   
  // Fill these variables with the date and time.  
  int seconds, minutes, hours, dayofweek, dayofmonth, month, year;  
  // Example for november 11, 2013, 18:00, monday is 1st day of Week.  
  // Set your own time and date in these variables.  
  seconds  = 0;  
  minutes  = 59;  
  hours   = 17;  
  dayofweek = 1; // Day of week, any day can be first, counts 1...7  
  dayofmonth = 11; // Day of month, 1...31  
  month   = 11; // month 1...12  
  year    = 2013;  
  // Set a time and date  
  // This also clears the CH (Clock Halt) bit,   
  // to start the clock.  
  // Fill the structure with zeros to make   
  // any unused bits zero  
  memset ((char *) &rtc, 0, sizeof(rtc));  
  rtc.Seconds  = bin2bcd_l( seconds);  
  rtc.Seconds10 = bin2bcd_h( seconds);  
  rtc.CH     = 0;   // 1 for Clock Halt, 0 to run;  
  rtc.Minutes  = bin2bcd_l( minutes);  
  rtc.Minutes10 = bin2bcd_h( minutes);  
  // To use the 12 hour format,  
  // use it like these four lines:  
  //  rtc.h12.Hour  = bin2bcd_l( hours);  
  //  rtc.h12.Hour10 = bin2bcd_h( hours);  
  //  rtc.h12.AM_PM = 0;   // AM = 0  
  //  rtc.h12.hour_12_24 = 1; // 1 for 24 hour format  
  rtc.h24.Hour  = bin2bcd_l( hours);  
  rtc.h24.Hour10 = bin2bcd_h( hours);  
  rtc.h24.hour_12_24 = 0; // 0 for 24 hour format  
  rtc.Date    = bin2bcd_l( dayofmonth);  
  rtc.Date10   = bin2bcd_h( dayofmonth);  
  rtc.Month   = bin2bcd_l( month);  
  rtc.Month10  = bin2bcd_h( month);  
  rtc.Day    = dayofweek;  
  rtc.Year    = bin2bcd_l( year - 2000);  
  rtc.Year10   = bin2bcd_h( year - 2000);  
  rtc.WP = 0;   
  // Write all clock data at once (burst mode).  
  DS1302_clock_burst_write( (uint8_t *) &rtc);  
 #endif  
 }  
 void loop()  
 {  
  ds1302_struct rtc;  
  char buffer[80];   // the code uses 70 characters.  
  // Read all clock data at once (burst mode).  
  DS1302_clock_burst_read( (uint8_t *) &rtc);  
  sprintf( buffer, "Time = %02d:%02d:%02d, ", \  
   bcd2bin( rtc.h24.Hour10, rtc.h24.Hour), \  
   bcd2bin( rtc.Minutes10, rtc.Minutes), \  
   bcd2bin( rtc.Seconds10, rtc.Seconds));  
  Serial.print(buffer);  
  sprintf(buffer, "Date(day of month) = %d, Month = %d, " \  
   "Day(day of week) = %d, Year = %d", \  
   bcd2bin( rtc.Date10, rtc.Date), \  
   bcd2bin( rtc.Month10, rtc.Month), \  
   rtc.Day, \  
   2000 + bcd2bin( rtc.Year10, rtc.Year));  
  Serial.println( buffer);  
  delay( 5000);  
 }  
 // --------------------------------------------------------  
 // DS1302_clock_burst_read  
 //  
 // This function reads 8 bytes clock data in burst mode  
 // from the DS1302.  
 //  
 // This function may be called as the first function,   
 // also the pinMode is set.  
 //  
 void DS1302_clock_burst_read( uint8_t *p)  
 {  
  int i;  
  _DS1302_start();  
  // Instead of the address,   
  // the CLOCK_BURST_READ command is issued  
  // the I/O-line is released for the data  
  _DS1302_togglewrite( DS1302_CLOCK_BURST_READ, true);   
  for( i=0; i<8; i++)  
  {  
   *p++ = _DS1302_toggleread();  
  }  
  _DS1302_stop();  
 }  
 // --------------------------------------------------------  
 // DS1302_clock_burst_write  
 //  
 // This function writes 8 bytes clock data in burst mode  
 // to the DS1302.  
 //  
 // This function may be called as the first function,   
 // also the pinMode is set.  
 //  
 void DS1302_clock_burst_write( uint8_t *p)  
 {  
  int i;  
  _DS1302_start();  
  // Instead of the address,   
  // the CLOCK_BURST_WRITE command is issued.  
  // the I/O-line is not released  
  _DS1302_togglewrite( DS1302_CLOCK_BURST_WRITE, false);   
  for( i=0; i<8; i++)  
  {  
   // the I/O-line is not released  
   _DS1302_togglewrite( *p++, false);   
  }  
  _DS1302_stop();  
 }  
 // --------------------------------------------------------  
 // DS1302_read  
 //  
 // This function reads a byte from the DS1302   
 // (clock or ram).  
 //  
 // The address could be like "0x80" or "0x81",   
 // the lowest bit is set anyway.  
 //  
 // This function may be called as the first function,   
 // also the pinMode is set.  
 //  
 uint8_t DS1302_read(int address)  
 {  
  uint8_t data;  
  // set lowest bit (read bit) in address  
  bitSet( address, DS1302_READBIT);   
  _DS1302_start();  
  // the I/O-line is released for the data  
  _DS1302_togglewrite( address, true);   
  data = _DS1302_toggleread();  
  _DS1302_stop();  
  return (data);  
 }  
 // --------------------------------------------------------  
 // DS1302_write  
 //  
 // This function writes a byte to the DS1302 (clock or ram).  
 //  
 // The address could be like "0x80" or "0x81",   
 // the lowest bit is cleared anyway.  
 //  
 // This function may be called as the first function,   
 // also the pinMode is set.  
 //  
 void DS1302_write( int address, uint8_t data)  
 {  
  // clear lowest bit (read bit) in address  
  bitClear( address, DS1302_READBIT);    
  _DS1302_start();  
  // don't release the I/O-line  
  _DS1302_togglewrite( address, false);   
  // don't release the I/O-line  
  _DS1302_togglewrite( data, false);   
  _DS1302_stop();   
 }  
 // --------------------------------------------------------  
 // _DS1302_start  
 //  
 // A helper function to setup the start condition.  
 //  
 // An 'init' function is not used.  
 // But now the pinMode is set every time.  
 // That's not a big deal, and it's valid.  
 // At startup, the pins of the Arduino are high impedance.  
 // Since the DS1302 has pull-down resistors,   
 // the signals are low (inactive) until the DS1302 is used.  
 void _DS1302_start( void)  
 {  
  digitalWrite( DS1302_CE_PIN, LOW); // default, not enabled  
  pinMode( DS1302_CE_PIN, OUTPUT);   
  digitalWrite( DS1302_SCLK_PIN, LOW); // default, clock low  
  pinMode( DS1302_SCLK_PIN, OUTPUT);  
  pinMode( DS1302_IO_PIN, OUTPUT);  
  digitalWrite( DS1302_CE_PIN, HIGH); // start the session  
  delayMicroseconds( 4);      // tCC = 4us  
 }  
 // --------------------------------------------------------  
 // _DS1302_stop  
 //  
 // A helper function to finish the communication.  
 //  
 void _DS1302_stop(void)  
 {  
  // Set CE low  
  digitalWrite( DS1302_CE_PIN, LOW);  
  delayMicroseconds( 4);      // tCWH = 4us  
 }  
 // --------------------------------------------------------  
 // _DS1302_toggleread  
 //  
 // A helper function for reading a byte with bit toggle  
 //  
 // This function assumes that the SCLK is still high.  
 //  
 uint8_t _DS1302_toggleread( void)  
 {  
  uint8_t i, data;  
  data = 0;  
  for( i = 0; i <= 7; i++)  
  {  
   // Issue a clock pulse for the next databit.  
   // If the 'togglewrite' function was used before   
   // this function, the SCLK is already high.  
   digitalWrite( DS1302_SCLK_PIN, HIGH);  
   delayMicroseconds( 1);  
   // Clock down, data is ready after some time.  
   digitalWrite( DS1302_SCLK_PIN, LOW);  
   delayMicroseconds( 1);    // tCL=1000ns, tCDD=800ns  
   // read bit, and set it in place in 'data' variable  
   bitWrite( data, i, digitalRead( DS1302_IO_PIN));   
  }  
  return( data);  
 }  
 // --------------------------------------------------------  
 // _DS1302_togglewrite  
 //  
 // A helper function for writing a byte with bit toggle  
 //  
 // The 'release' parameter is for a read after this write.  
 // It will release the I/O-line and will keep the SCLK high.  
 //  
 void _DS1302_togglewrite( uint8_t data, uint8_t release)  
 {  
  int i;  
  for( i = 0; i <= 7; i++)  
  {   
   // set a bit of the data on the I/O-line  
   digitalWrite( DS1302_IO_PIN, bitRead(data, i));   
   delayMicroseconds( 1);   // tDC = 200ns  
   // clock up, data is read by DS1302  
   digitalWrite( DS1302_SCLK_PIN, HIGH);     
   delayMicroseconds( 1);   // tCH = 1000ns, tCDH = 800ns  
   if( release && i == 7)  
   {  
    // If this write is followed by a read,   
    // the I/O-line should be released after   
    // the last bit, before the clock line is made low.  
    // This is according the datasheet.  
    // I have seen other programs that don't release   
    // the I/O-line at this moment,  
    // and that could cause a shortcut spike   
    // on the I/O-line.  
    pinMode( DS1302_IO_PIN, INPUT);  
    // For Arduino 1.0.3, removing the pull-up is no longer needed.  
    // Setting the pin as 'INPUT' will already remove the pull-up.  
    // digitalWrite (DS1302_IO, LOW); // remove any pull-up   
   }  
   else  
   {  
    digitalWrite( DS1302_SCLK_PIN, LOW);  
    delayMicroseconds( 1);    // tCL=1000ns, tCDD=800ns  
   }  
  }  
 }  

Même code mais sans commentaires :

 // Version 2-2 : without comment, only for DS1 302 Clock Module  
 //   Littke adpted from arduino.cc user "Krodal"  
 // Set your own pins with these defines !  
 #define DS1302_SCLK_PIN  8  // Arduino pin for the Serial Clock  
 #define DS1302_IO_PIN   9  // Arduino pin for the Data I/O  
 #define DS1302_CE_PIN  10  // Arduino pin for the Chip RST  
 // Macros to convert the bcd values of the registers to normal  
 // integer variables.  
 // The code uses seperate variables for the high byte and the low byte  
 // of the bcd, so these macros handle both bytes seperately.  
 #define bcd2bin(h,l)  (((h)*10) + (l))  
 #define bin2bcd_h(x)  ((x)/10)  
 #define bin2bcd_l(x)  ((x)%10)  
 #define DS1302_SECONDS      0x80  
 #define DS1302_MINUTES      0x82  
 #define DS1302_HOURS       0x84  
 #define DS1302_DATE       0x86  
 #define DS1302_MONTH       0x88  
 #define DS1302_DAY        0x8A  
 #define DS1302_YEAR       0x8C  
 #define DS1302_ENABLE      0x8E  
 #define DS1302_TRICKLE      0x90  
 #define DS1302_CLOCK_BURST    0xBE  
 #define DS1302_CLOCK_BURST_WRITE 0xBE  
 #define DS1302_CLOCK_BURST_READ 0xBF  
 #define DS1302_RAMSTART     0xC0  
 #define DS1302_RAMEND      0xFC  
 #define DS1302_RAM_BURST     0xFE  
 #define DS1302_RAM_BURST_WRITE  0xFE  
 #define DS1302_RAM_BURST_READ  0xFF  
 #define DS1302_D0 0  
 #define DS1302_D1 1  
 #define DS1302_D2 2  
 #define DS1302_D3 3  
 #define DS1302_D4 4  
 #define DS1302_D5 5  
 #define DS1302_D6 6  
 #define DS1302_D7 7  
 // Bit for reading (bit in address)  
 #define DS1302_READBIT DS1302_D0 // READBIT=1: read instruction  
 // Bit for clock (0) or ram (1) area,   
 // called R/C-bit (bit in address)  
 #define DS1302_RC DS1302_D6  
 // Seconds Register  
 #define DS1302_CH DS1302_D7  // 1 = Clock Halt, 0 = start  
 // Hour Register  
 #define DS1302_AM_PM DS1302_D5 // 0 = AM, 1 = PM  
 #define DS1302_12_24 DS1302 D7 // 0 = 24 hour, 1 = 12 hour  
 // Enable Register  
 #define DS1302_WP DS1302_D7  // 1 = Write Protect, 0 = enabled  
 // Trickle Register  
 #define DS1302_ROUT0 DS1302_D0  
 #define DS1302_ROUT1 DS1302_D1  
 #define DS1302_DS0  DS1302_D2  
 #define DS1302_DS1  DS1302_D2  
 #define DS1302_TCS0 DS1302_D4  
 #define DS1302_TCS1 DS1302_D5  
 #define DS1302_TCS2 DS1302_D6  
 #define DS1302_TCS3 DS1302_D7  
 typedef struct ds1302_struct  
 {  
  uint8_t Seconds:4;   // low decimal digit 0-9  
  uint8_t Seconds10:3;  // high decimal digit 0-5  
  uint8_t CH:1;      // CH = Clock Halt  
  uint8_t Minutes:4;  
  uint8_t Minutes10:3;  
  uint8_t reserved1:1;  
  union  
  {  
   struct  
   {  
    uint8_t Hour:4;  
    uint8_t Hour10:2;  
    uint8_t reserved2:1;  
    uint8_t hour_12_24:1; // 0 for 24 hour format  
   } h24;  
   struct  
   {  
    uint8_t Hour:4;  
    uint8_t Hour10:1;  
    uint8_t AM_PM:1;   // 0 for AM, 1 for PM  
    uint8_t reserved2:1;  
    uint8_t hour_12_24:1; // 1 for 12 hour format  
   } h12;  
  };  
  uint8_t Date:4;      // Day of month, 1 = first day  
  uint8_t Date10:2;  
  uint8_t reserved3:2;  
  uint8_t Month:4;     // Month, 1 = January  
  uint8_t Month10:1;  
  uint8_t reserved4:3;  
  uint8_t Day:3;      // Day of week, 1 = first day (any day)  
  uint8_t reserved5:5;  
  uint8_t Year:4;      // Year, 0 = year 2000  
  uint8_t Year10:4;  
  uint8_t reserved6:7;  
  uint8_t WP:1;       // WP = Write Protect  
 };  
 void setup()  
 {     
  ds1302_struct rtc;  
  Serial.begin(9600);  
  Serial.println(F("DS1302 Real Time Clock"));  
  Serial.println(F("Version 2-2, November 2013"));  
  DS1302_write (DS1302_ENABLE, 0);  
  // Disable Trickle Charger.  
  DS1302_write (DS1302_TRICKLE, 0x00);  
 // Comment or UnComment the the next define,   
 // after the right date and time are set.  
 //#define SET_DATE_TIME_JUST_ONCE  
 #ifdef SET_DATE_TIME_JUST_ONCE   
  // Fill these variables with the date and time.  
  int seconds, minutes, hours, dayofweek, dayofmonth, month, year;  
  // Example for november 11, 2013, 18:00, monday is 1st day of Week.  
  // Set your own time and date in these variables.  
  seconds  = 0;  
  minutes  = 59;  
  hours   = 17;  
  dayofweek = 1; // Day of week, any day can be first, counts 1...7  
  dayofmonth = 11; // Day of month, 1...31  
  month   = 11; // month 1...12  
  year    = 2013;  
  // Set a time and date  
  // This also clears the CH (Clock Halt) bit,   
  // to start the clock.  
  // Fill the structure with zeros to make   
  // any unused bits zero  
  memset ((char *) &rtc, 0, sizeof(rtc));  
  rtc.Seconds  = bin2bcd_l( seconds);  
  rtc.Seconds10 = bin2bcd_h( seconds);  
  rtc.CH     = 0;   // 1 for Clock Halt, 0 to run;  
  rtc.Minutes  = bin2bcd_l( minutes);  
  rtc.Minutes10 = bin2bcd_h( minutes);  
  // To use the 12 hour format,  
  // use it like these four lines:  
  //  rtc.h12.Hour  = bin2bcd_l( hours);  
  //  rtc.h12.Hour10 = bin2bcd_h( hours);  
  //  rtc.h12.AM_PM = 0;   // AM = 0  
  //  rtc.h12.hour_12_24 = 1; // 1 for 24 hour format  
  rtc.h24.Hour  = bin2bcd_l( hours);  
  rtc.h24.Hour10 = bin2bcd_h( hours);  
  rtc.h24.hour_12_24 = 0; // 0 for 24 hour format  
  rtc.Date    = bin2bcd_l( dayofmonth);  
  rtc.Date10   = bin2bcd_h( dayofmonth);  
  rtc.Month   = bin2bcd_l( month);  
  rtc.Month10  = bin2bcd_h( month);  
  rtc.Day    = dayofweek;  
  rtc.Year    = bin2bcd_l( year - 2000);  
  rtc.Year10   = bin2bcd_h( year - 2000);  
  rtc.WP = 0;   
  // Write all clock data at once (burst mode).  
  DS1302_clock_burst_write( (uint8_t *) &rtc);  
 #endif  
 }  
 void loop()  
 {  
  ds1302_struct rtc;  
  char buffer[80];   // the code uses 70 characters.  
  // Read all clock data at once (burst mode).  
  DS1302_clock_burst_read( (uint8_t *) &rtc);  
  sprintf( buffer, "Time = %02d:%02d:%02d, ", \  
   bcd2bin( rtc.h24.Hour10, rtc.h24.Hour), \  
   bcd2bin( rtc.Minutes10, rtc.Minutes), \  
   bcd2bin( rtc.Seconds10, rtc.Seconds));  
  Serial.print(buffer);  
  sprintf(buffer, "Date(day of month) = %d, Month = %d, " \  
   "Day(day of week) = %d, Year = %d", \  
   bcd2bin( rtc.Date10, rtc.Date), \  
   bcd2bin( rtc.Month10, rtc.Month), \  
   rtc.Day, \  
   2000 + bcd2bin( rtc.Year10, rtc.Year));  
  Serial.println( buffer);  
  delay( 5000);  
 }  
 void DS1302_clock_burst_read( uint8_t *p)  
 { int i;  
  _DS1302_start();  
  _DS1302_togglewrite( DS1302_CLOCK_BURST_READ, true);   
  for( i=0; i<8; i++)  
  {  
   *p++ = _DS1302_toggleread();  
  }  
  _DS1302_stop();  
 }  
 void DS1302_clock_burst_write( uint8_t *p)  
 { int i;  
  _DS1302_start();  
  _DS1302_togglewrite( DS1302_CLOCK_BURST_WRITE, false);   
  for( i=0; i<8; i++)  
  {  
   // the I/O-line is not released  
   _DS1302_togglewrite( *p++, false);   
  }  
  _DS1302_stop();  
 }  
 uint8_t DS1302_read(int address)  
 { uint8_t data;  
  // set lowest bit (read bit) in address  
  bitSet( address, DS1302_READBIT);   
  _DS1302_start();  
  // the I/O-line is released for the data  
  _DS1302_togglewrite( address, true);   
  data = _DS1302_toggleread();  
  _DS1302_stop();  
  return (data);  
 }  
 void DS1302_write( int address, uint8_t data)  
 { // clear lowest bit (read bit) in address  
  bitClear( address, DS1302_READBIT);    
  _DS1302_start();  
  // don't release the I/O-line  
  _DS1302_togglewrite( address, false);   
  // don't release the I/O-line  
  _DS1302_togglewrite( data, false);   
  _DS1302_stop();   
 }  
 void _DS1302_start( void)  
 { digitalWrite( DS1302_CE_PIN, LOW); // default, not enabled  
  pinMode( DS1302_CE_PIN, OUTPUT);   
  digitalWrite( DS1302_SCLK_PIN, LOW); // default, clock low  
  pinMode( DS1302_SCLK_PIN, OUTPUT);  
  pinMode( DS1302_IO_PIN, OUTPUT);  
  digitalWrite( DS1302_CE_PIN, HIGH); // start the session  
  delayMicroseconds( 4);      // tCC = 4us  
 }  
 void _DS1302_stop(void)  
 { digitalWrite( DS1302_CE_PIN, LOW);  
  delayMicroseconds( 4);      // tCWH = 4us  
 }  
 uint8_t _DS1302_toggleread( void)  
 { uint8_t i, data;  
  data = 0;  
  for( i = 0; i <= 7; i++)  
  { digitalWrite( DS1302_SCLK_PIN, HIGH);  
   delayMicroseconds( 1);  
   digitalWrite( DS1302_SCLK_PIN, LOW);  
   delayMicroseconds( 1);    // tCL=1000ns, tCDD=800ns  
   bitWrite( data, i, digitalRead( DS1302_IO_PIN));   
  }  
  return( data);  
 }  
 void _DS1302_togglewrite( uint8_t data, uint8_t release)  
 { int i;  
  for( i = 0; i <= 7; i++)  
  { digitalWrite( DS1302_IO_PIN, bitRead(data, i));   
   delayMicroseconds( 1);   // tDC = 200ns  
   digitalWrite( DS1302_SCLK_PIN, HIGH);     
   delayMicroseconds( 1);   // tCH = 1000ns, tCDH = 800ns  
   if( release && i == 7)  
   {pinMode( DS1302_IO_PIN, INPUT);  
   }  
   else  
   { digitalWrite( DS1302_SCLK_PIN, LOW);  
    delayMicroseconds( 1);    // tCL=1000ns, tCDD=800ns  
   }  
  }  
 }  

RTC v0.9b 1307

IMGP2080 IMGP2081

http://bildr.org/2011/03/ds1307-arduino/

http://quickstartkitforarduino.blogspot.fr/2012/05/simple-labs-quick-start-kit-for-arduino_17.html

Laisser un commentaire

Ce site utilise Akismet pour réduire les indésirables. En savoir plus sur la façon dont les données de vos commentaires sont traitées.

Articles récents
Commentaires récents
fatima dans Bienvenue !
AdminDroid dans Bienvenue !
fatima dans Bienvenue !
Archives
Catégories